
Flow of an ideal fluid 

When the Reynolds number Re is large, since the diffusion of vorticity is 
now small (eqn (6.18)) because the boundary layer is very thin, the over- 
whelming majority of the flow is the main flow. Consequently, although the 
fluid itself is viscous, it can be treated as an ideal fluid subject to Euler’s 
equation of motion, so disregarding the viscous term. In other words, the 
applicability of ideal flow is large. 

For an irrotational flow, the velocity potential 4 can be defined so this flow 
is called the potential flow. Originally the definition of potential flow did 
not distinguish between viscous and non-viscous flows. However, now, as 
studied below, potential flow refers to an ideal fluid. 

In the case of two-dimensional flow, a stream function $ can be defined 
from the continuity equation, establishing a relationship where the Cauchy- 
Riemann equation is satisfied by both 4 and $. This fact allows theoretical 
analysis through application of the theory of complex variables so that 4 and 
$ can be obtained. Once 4 or I,I? is obtained, velocities u and u in the x and 
y directions respectively can be obtained, and the nature of the flow is 
revealed. 

In the case of three-dimensional flow, the theory of complex variables 
cannot be used. Rather, Laplace’s equation A 2 4  = 0 for a velocity potential 
4 = 0 is solved. Using this approach the flow around a sphere etc. can be 
determined. 

Here, however, only two-dimensional flows will be considered. 

Consider the force acting on the small element of fluid in Fig. 12.1. Since 
the fluid is an ideal fluid, no force due to viscosity acts. Therefore, by 
Newton’s second law of motion, the sum of all forces acting on the element 
in any direction must balance the inertia force in the same direction. The 
pressure acting on the small element of fluid dx dy is, as shown in Fig. 12.1, 
similar to Fig. 6.3(b). In addition, taking account of the body force and also 
assuming that the sum of these two forces is equal to the inertial force, the 
equation of motion for this case can be obtained. This is the case where the 
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Fig. 12.1 Balance of pressures on fluid element 

viscous term of eqn (6.12) is omitted. Consequently the following equations 
are obtainable: 

p - + u - + u -  =px-- 

aP p - + u - + u -  = p Y - -  
(12.1) (E Z E) ay ”) (E ;: t) 

These are similar equations to eqn (5.4), and are called Euler’s equations of 
motion for two-dimensional flow. 

For a steady flow, if the body force term is neglected, then: 

p(ug+ug)=-$j  (12.2) 

,(u;+.;) = -ay aP 

If u and u are known, the pressure is obtainable from eqn (12.1) or eqn 
(12.2). 

Generally speaking, in order to obtain the flow of an ideal fluid, the 
continuity equation (6.2) and the equation of motion (12.1) or eqn (12.2) 
must be solved under the given initial conditions and boundary conditions. In 
the flow fluid, three quantities are to be obtained, namely u, u and p, as 
functions of t and x ,  y. However, since the acceleration term, i.e. inertial 
term, is non-linear, it is so difficult to obtain them analytically that a solution 
can only be obtained for a particular restricted case. 

The velocity potential 4 as a function of x and y will be studied. Assume 
that 
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(1 2.3)' 

From &lay = #4/ayax = #@/axay = au/ax the following relationship is 
obtained: 

au a' 
ay ax 
_ _ _ -  - 0  (1 2.4) 

This is the condition for irrotational motion. Conversely, if a flow is 
irrotational, function 4 as in the following equation must exist for u and u: 

(12.5) d 4  = u dx + u dy 

Using eqn (12.3), 

(12.6) 

Consequently, when the function 4 has been obtained, velocities u and u can 
also be obtained by differentiation, and thus the flow pattern is found. This 
function 4 is called velocity potential, and such a flow is called potential or 
irrotational flow. In other words, the velocity potential is a function whose 
gradient is equal to the velocity vector. 

Equation (12.6) turns out as follows if expressed in polar coordinates: 

(1 2.7) 

For the potential flow of an incompressible fluid, substitute eqn (12.3) into 
continuity equations (6.2), and the following relationship is obtained: 

$4 $4 -+--0 
ax2 ay' - ( 1 2.8)' 

Equation (12.8), called Laplace's equation, is thus satisfied by the velocity 
potential used in this manner to express the continuity equation. From any 
solution which satisfies Laplace's equation and the particular boundary 
conditions, the velocity distribution can be determined. It is particularly 

In general, whenever u, u and w are respectively expressed as a+/ax, a$/ay and i34/az for vector 
V(x, y and z components are respectively u, u and w), vector Y is written as grad 4 or V4: 

Equation (12.3) is the case of two-dimensional flow where w = 0, and can be written as grad 4 
or V4.  

Thatis 

divV = div[u, u, w] = div(grad4) = divV4 = div 

-_ $4 $4 $4 - +-+- axz ay2 a2 
#/ax2 + $/a# + $/a2 is called the Laplace operator (Laplacian), abbreviated to A. Equation 
(12.8) is for a two-dimensional flow where w = 0, expressed as A 4  = 0. 
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noteworthy that the pattern of potential flow is determined solely by the 
continuity equation and the momentum equation serves only to determine 
the pressure. 

A line along which 4 has a constant value is called the equipotential line, 
and on this line, since d+ = 0 and the inner product of both vectors of 
velocity and the tangential line is zero, the direction of fluid velocity is at 
right angles to the equipotential line. 

For incompressible flow, from the continuity equation (6.2), 
au av 
ax ay 
- + - = o  (1 2.9) 

This is eqn (12.4) but with u and u respectively replaced by -v and u. 
Consequently, corresponding to eqn (12.5), it turns out that there exists a 
function $ for x and y shown by the following equation: 

d$ = -vdx + udy (12.10) 

In general, since 

u and u are respectively expressed as follows: 

w w 
ax a Y  

u = -  -u = - 

(12.11) 

(1 2.12) 

Consequently, once function $ has been obtained, differentiating it by x and 
y gives velocities u and u, revealing the detail of the fluid motion. I,+ is called 
the stream function. 

Expressing the above equation in polar coordinates gives 

(12.13) 

In general, for two-dimensional flow, the 
eqn (4.1): 

dx dy _-  - - 
u u  

or 

streamline is as follows, from 

-U dx + Udy = 0 (12.14) 

From eqns (12.12) and (12.14), the corresponding d$ = 0, i.e. II/ = constant, 
defines a streamline. The product of the tangents of a streamline and an 
equipotential line at the crossing point of both lines is as follow from eqns 
(12.3) and (12.12): 
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Fig. 12.2 Relationship between flow rate and stream function 

a* a* ($),($),= (&I%) x (:I$) = -l 

This relationship shows that the streamline intersects normal to the 
equipotential line at the crossing point of the two lines. 

As shown in Fig. 12.2, consider points A and B on two closely 
neighbouring streamlines, I) and II/ + d+. The volume flow rate dQ flowing in 
unit time and crossing line AB is as follows from the figure: 

a* a* 
ay ax 

dQ = u dy - udx = -dy + -dX = d$ 

The volume flow rate Q of fluid flowing between two streamlines $ = $, 
and $ = 9, is thus given by the following equation: 

Q = TdQ = / yd$  = $, -IC/, ( 1 2.1 5) 

Substituting eqn (1 2.12) into (4.8) for flow without vorticity, the following 

-+,=o $* $* (1 2.16) 

I 

is obtained, clarifying that the stream function satisfies Laplace’s equation: 

ax2 ay 

For a two-dimensional incompressible potential flow, since the velocity 
potential Cp and stream function t,h exist, the following equations result from 
eqns (12.3) and (12.12): 
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( 1 2.1 7) 

These equations are called the Cauchy-Riemann equations in the theory of 
complex variables. In this case they express the relationship between the 
velocity potential and stream function. The Cauchy-Riemann equations 
clarify the fact that 4 and $ both satisfy Laplace’s equation. They also clarify 
the fact that a combination of 4 and t+b satisfying the Cauchy-Riemann 
conditions expresses a two-dimensional incompressible potential flow. 

Now, consider a regular function3 w(z) of complex variable z = x + iy and 
express it as follows by dividing it into real and imaginary parts: 

( 1 2.1 8) 
w(z) = 4 + i$ 
z = x + iy = r(cos e + i sine) = rei6 

4 = 44x3 Y) * = *(x3 Y) 

and 4 and IC/ above satisfy eqn (12.17) owing to the nature of a regular 
function. Consequently, real part 4(x, y) and imaginary part $(x, y) of the 
regular function w(z) of complex number z can respectively be regarded as 
the velocity potential and the stream function of the two-dimensional 
incompressible potential flow. In other words, there exists an irrotational 
motion whose equipotential line is $(x, y) = constant and streamline 
$(x, y) = constant. Such a regular function w(z) is called the complex 
potential. 

From eqn (12.18) 

aw aw 
dw=-dx+-dy= 

ax ay 
= (u - iu)dx + (u  + iu)dy = (u - iu)(dx + i dy) = (u - iu)dz 

Therefor e 

dw 
dz 
_ -  - u - 1 u  (12.19) 

Consequently, whenever w(z) is differentiated with respect to z, as shown 
in Fig. 12.3, its real part yields velocity u in the x direction, and the negative 
of its imaginary part yields velocity u in the y direction. The actual velocity 
u + io is called the complex velocity while u - iu in the above equation is the 
conjugate complex velocity. 

The function whose differential at any point with respect to z is independent of direction in 
the z plane is called a regular function. A regular function satisfies the Cauchy-Riemann 
equations. 
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Fig. 12.3 Complex velocity 

12.5.1 Basic example 

Parallel flow 
For the uniform flow U shown in Fig. 12.4, from eqn (12.3) 

u = - = u  84 v = - = o  afp 
ax a Y  

Therefore 

afp afp 
ax aY 

dfp=-dX+-dy= Udx 

fp = u x  

Fig. 12.4 Parallel flow 
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From eqn (12.12) 

- 0  a* u = - - - -  a* u = - = u  aY ax 

Therefore 

a* a+ 
ax ay * = UY 

d4=-dX+-dy= Udy 

w(z) = 4 + iJ/ = U(x + iy) = U z  (12.20) 

The complex potential of parallel flow U in the x direction emerges as 

Furthermore, if the complex potential is given as w(z) = U z ,  the conjugate 
w(z) = uz. 

complex velocity is 

(12.21) dw - = u  
dz 

clarifying again that it expresses a uniform flow in the direction of the x 
axis. 

Source 
As shown in Fig. 12.5, consider a case where fluid discharges from the origin 
(point 0) at quantity q per unit time. Putting velocity in the radial direction 
on a circle of radius r to u,, the discharge q per unit thickness is 

q = 27crv, = constant (12.22) 

From eqns (12.7) and (12.22) 

Fig. 12.5 Source 
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Also, from eqn (12.7), 

Integrating d4  in the above equation gives 

4=-1 ogr 
27L 

Then, from eqns (12.13) and (12.22), 

Therefore 

4 
2n 

* = - - e  

(1 2.23) 

(1 2.24) 

Consequently, the complex potential is expressed by the following equation: 

(12.25) 4 4 4 
271 2n 2n w = 4 + i$ = -(Iogr + id) = -Iog(rei8) = -1ogz 

From eqns (12.23) and (12.24) it is known that the equipotential lines are a 
set of circles centred at the origin while the streamlines are a set of radial lines 
radiating from the origin. Also, it is noted that the flow velocity u, is inversely 
proportional to the distance r from the origin. 

Whenever q > 0, fluid flows out evenly from the origin towards the 
periphery. Such a point is called a source. Conversely, whenever q < 0, fluid 
is absorbed evenly from the periphery. Such a point is called a sink. 141 is 
called the strength of the source or sink. 

Free vortex 
In Fig. 12.6, fluid rotates around the origin with tangential velocity v, at 
any given radius r.  The circulation r is as follows from eqn (4.9): 

2n 2n 

u g  ds = u,r J, d0 = ~ K T U ,  

The velocity potential 4 is 

Therefore 

r 
4=-0  

271 
(12.26) 

It emerges that uo is inversely proportional to the distance from the centre. 
The stream function $ is 
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Fig. 12.6 Vortex 

u - - _ - -  a* - l- u r = - = o  a* 
ar 2x2 r a8 

r 
2.n O g r  

8 -  

Therefore * = --I (1 2.27) 

Consequently, the complex potential is 

r iT iT w(z)=4+i$ =- (8=i logr )=  --(logr+i8)= --logz (12.28) 
2.n 2.n 2n 

For clockwise circulation, w(z) = (il-/2.n). 
From eqns (12.26) and (12.17), it is known that the equipotential lines are 

a group of radial straight lines passing through the origin whilst the flow lines 
are a group of concentric circles centred on the origin. This flow appears in 
Fig. 12.5 with broken lines representing streamlines and solid lines as equi- 
potential lines. The circulation r is positive counterclockwise, and negative 
clockwise. 

This flow consists of rotary motion in concentric circles around the origin 
with the velocity inversely proportional to the distance from the origin. Such 
a flow is called a free vortex while the origin point itself is a point vortex. 
The circulation is also called the strength of the vortex. 

12.5.2 Synthesising of flows 

When there are two regular functions w,(z) and wz(z), the function obtained 
as their sum 

w(z) = w,(z) + wz(z) (12.29) 
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is also a regular function. If wI and w2 represent the complex potentials of 
two flows, another complex potential is obtained from their sum. By 
combining two two-dimensional incompressible potential flows in such a 
manner, another flow can be obtained. 

Combining a source and a sink 
Assume that, as shown in Fig. 12.7, the source q is at point A (z = -a) and 
sink -q is at point B (z = a). 

The complex potential wI at any point z due to the source whose strength 
is q at point A is 

w1 = -log(z 4 + a) (12.30) 

The complex potential w2 at any point z due to the sink whose strength is q 
is 

wp = --log(z 4 - a) (12.31) 

Because of the linearity of Laplace's equation the complex potential w of 
the flow which is the combination of these two flows is 

w = - 4 [log(z + a) - log(z - a)] 

2n 

2n 

(12.32) 
2n 

Now, from Fig. 12.7, since 

z + a = r,eiel z - a = r2eie2 

from eqn (12.32) 

w = - log- + i(0, - 0,)) (1 2.33) 
271 q (  r2 r' 

Therefore 

Fig. 12.7 Definition of variables for source A and sink B combination 
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4 = Qlog(;) 2n (1 2.34) 

(12.35) 

Assuming 4 = constant from the first equation, equipotential lines are 
obtainable which are Appolonius circles for points A and B (a group of 
circles whose ratios of distances from fixed points A and B are constant). 
Taking $ = constant, streamlines are obtainable which are found to be 
another set of circles whose vertical angles are the constant angle (e, - 6,) for 
chord AB (Fig. 12.8). 

Consider the case where a +. 0 in Fig. 12.8, under the condition of 
aq = constant. Then from eqn (12.32), 

4 
2n $ = - @ I  - 62)  

w=-log ~ - 2  a+- - +- - +... =!!!!=E (12.36) 
2n q (;::;:)-n[z ;(:)3 :(:y ] nz z 

A flow given by the complex potential of eqn (12.36) is called a doublet, 
while m = aq/n is its strength. The concept of a doublet is the extremity of a 
source and a sink of equal strength approaching infinitesimally close to each 
other whilst increasing their strength. 

From eqn (12.36), 

(12.37) 
m x - iy w=-=m- 

x+1y xz+y2 

Fig. 12.8 Flow due to the combination of source and sink 
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Fig. 12.9 Doublet 

(12.38) 

(12.39) 

From these equations, as shown in Fig. 12.9, an equipotential line is a circle 
whose centre is on the x axis whilst being tangential to the y axis, and a 
streamline is a circle whose centre is on the y axis whilst being tangential to 
the x axis. 

Flow around a cylinder 
Consider a circle of radius r,, centred at the origin in uniform parallel flows. 
In general, by placing a number of sources and sinks in parallel flows, flows 
around variously shaped bodies are obtainable. In this case, however, by 
superimposing parallel flows onto the same doublet shown in Fig. 12.9, flows 
around a circle are obtainable as follows. 

From eqns (12.29) and (12.36) the complex potential when a doublet is in 
uniform flows U is 

mx cp=- 
x2 + y2 

*=- my 
x2 + y2 

w(z)= uz+-= u z+-- 
m Z ( ;:) 
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Now, put m / U  = r;, and 

w(z)= u z + -  (1 2.40) ( !) 
Decompose the above using the relationship z = r(cos 8 + i sin e), and 

w(z) = u( r + $) cos 8 + i u (  r - $) sin 8 

4 = u(r+$)coso (12.41) 

II/= U(r-$)sinO (1 2.42) 

Also, the conjugate complex velocity is 

(1 2.43) 
Uri dw 

dz Z2 

with stagnation points at z = f r o .  The streamline passing the stagnation 
point II/ = 0 is given by the following equation: 

( r -$ ) s ine=o  

This streamline consists of the real axis and the circle of radius r,, centred at 
the origin. By replacing this streamline with a solid surface, the flow around a 
cylinder is obtained as shown in Fig. 12.10. 

=u- -  - 

The tangential velocity of flow around a cylinder is, from eqn (12.41), 

u - .!2 = - u( 1 + 2) sin 6 (1 2.44) 
' - r a e  

Since r = r,, on the cylinder surface, 
uo = -2U sin 8 

Fig. 12.10 Flow around a cylinder 
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Fig. 12.11 Definitions of v, and e I 

When the directions of 8 and vo are arranged as shown in Fig. 12.11, this 
becomes 

vo = 2U sin 8 (1 2.45) 

The complex potential when there is clockwise circulation r around the 
cylinder is, as follows from eqns (12.28) and (12.40), 

w(z)= u z + -  +-logz (1 2.46) 

The flow in this case turns out as shown in Fig. 12.12. The tangential 

( :) : 
velocity v; on the cylinder surface is as follows: 

Fig. 12.12 Flow around a cylinder with circulation 
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(1 2.47) 
r 

v; = 2Usine+- 
27cr0 

A simple flow can be studied within the limitations of the z plane as in the 
preceding section. For a complex flow, however, there may be some 
established cases of useful mapping of a transformation to another plane. 
For example, by transforming flow around a cylinder etc. through mapping 
functions onto some other planes, such complex flows as the flow around a 
wing, and between the blades of a pump, blower or turbine, can be 
determined. 

Assume that there is the relationship 

5 =m (1 2.48) 

between two complex variables z = x + iy and 5 = 5 + ir], and that c is the 
regular function of z.  Consider a mesh composed of x=constant and 
y = constant on the z plane as shown in Fig. 12.13. That mesh transforms to 
another mesh composed of 5 = constant and q = constant on the 5 plane. In 
other words, the pattern on the z plane is different from the pattern on the c 
plane but they are related to each other. 

Further, assume that, as shown in Fig. 12.14, point eo corresponds to point 
zo and that the points corresponding to points z1 and z2 both minutely off zo 
are el and c2. Then 

z1 - z - r io1 0 - le 2 -  0--2e 
el - c2 = R1eW 

z - z - io2 

C2 - eo = ReiB2 

From eqn (12.48), 

Fig. 12.13 Corresponding mesh on c and zplanes 
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Fig. 12.14 Conformal mapping 

lim (s) = e),_;,= lim (w) 
zl-+zZ ZI - zo ZI-'Z2 z2 - zo 

or 
R,eiBI R eiBZ 

2 --- - 
r ,  eisl r2eio2 

From the above, it turns out that 

2=- R2 e2-e,  = p 2 - p l  
rl R, 

and the minute triangles on the z plane are 

AZOZIZ, o< AiOili2 (12.49) 

This shows that even though the pattern as a whole on the z plane may be 
very different from that on the [ plane, their minute sections are similar and 
equiangularly mapped. Such a manner of pattern mapping is called 
conformal mapping, andf(z) is the mapping function. 

Now, consider the mapping function 

U2 
(12.50) i = z + ;  @ > 0 )  

Substitute a circle of radius a on the z plane, z = ae", into eqn (12.50), 

i = a(eio + ~/e") = a(ei8 + e-io) = 2acos e (1 2.5 1) 

At the time when 8 changes from 0 to 2n, 5 corresponds in 
2a + 0 + -2a + 0 + 2a. In other words, as shown in Fig. 12.15(a), the 
cylinder on the z plane is conformally mapped onto the flat board on the i 
plane. The mapping function in eqn (12.50) is renowned, and is called 
Joukowski's transformation. 

If conformal mapping is made onto the [ plane using Joukowski's mapping 
function (12.50) while changing the position and size of a cylinder on the z 
plane, the shape on the [ plane changes variously as shown in Fig. 12.15. 
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Fig. 12.15 Mapping of cylinders through Joukowski’s transformation: (a) flat plate; (b) elliptical 
section; ( 3  symmetrical wing; (d) asymmetrical wing 
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The flow around the asymmetrical wing appearing in Fig. 12.15(d) can be 
obtained by utilising Joukowski's conversion. Consider the flow in the case 
where a cylinder of eccentricity zo and radius ro is placed in a uniform flow U 
whose circulation strength is r. The complex potential of this flow can be 
obtained by substituting z - zo for z in eqn (12.46), 

w=u (z-zo)+- " ) + i 1 log(z - zo) (12.52) ( z-zo 271 

Putting z = zo + re", from w = Cp + i$ 

(12.53) 
d =  U(r+$)cose--e r 

+ =  U(r-$)sine--logr r 
271 

(12.54) 

On the circle r = r,, $ = constant, comprising a streamline. According to 
the Kutta condition4 (where the trailing edge must become a stagnation 
point), 

@ ) o = - B =  2ur0 sina - - 271 = o 

21t 

(1 2.55) 
r 

r=rg 

Therefore 
r = 41tUrosinp (12.56) 

Fig. 12.16 Mapping of flow around cylinder onto flow around wing 

4 If the trailing edge was not a stagnation point, the flow would go around the sharp edge at 
infinite velocity from the lower face of the wing towards the upper face. The Kutta condition 
avoids this physical impossibility. 
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Equipotential lines and streamlines produced by substituting values of r satis- 
fying eqn (12.56) into eqns (12.53) and (12.54) are shown in Fig. 12.16(a). 
They can be conformally mapped onto the [ plane by utilising Joukowski’s 
conversion by eliminating z from eqns (12.50) and (12.52) to obtain the 
complex potential on the [ plane. The resulting flow pattern around a wing 
can be found as shown in Fig. 12.16(b). In this way, by means of conformal 
mapping of simple flows, such as around a cylinder, flow around complex- 
shaped bodies can be found. 

Since the existence of analytical functions which shift z to the outside 
territory of given wing shapes is generally known, the behaviour of flow 
around these wings can be found from the flow around a cylinder through a 
process similar to the previous one. In addition, there are examples where it 
can be used for computing the contraction coefficient5 of flow out of an orifice 
in a large vessel and the drag6 due to the flow behind a flat plate normal to 
the flow. 

1. Obtain the velocity potential and the flow function for a flow whose 
components of velocity in the x and y directions at a given point in the 
flow are u,, and u,, respectively. 

2. Show the existence of the following relationship between flow function 
$ and the velocity components vr, ug in a two-dimensional flow: 

a* a* v g = - -  v = -  
ar rat2 

3. What is the flow whose velocity potential is expressed as Cp = TO/2z? 

4. Obtain the velocity potential and the stream function for radial flow 
from the origin at quantity q per unit time. 

5. Assuming that $ = U(r  - r i / r )  sin 8 expresses the stream function around 
a cylinder of radius r,, in a uniform flow of velocity U, obtain the velocity 
distribution and the pressure distribution on the cylinder surface. 

6. Obtain the pattern of flow whose complex potential is expressed as 

7. What is the flow expressed by the following complex potential? 

2 w = x .  

’ Lamb, H., Hydrodynamics, (1932), 6th edition, 98, Cambridge University Press. 
Kirchhoff, G.,  Grelles Journal, 70 (1 869), 289. 
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8. Obtain the complex potential of a uniform flow at angle c( to the x axis. 

9. Obtain the streamline y = k and the equipotential line x = c of a flow 
parallel to the x axis on the z plane when mapped onto the c plane by 
mapping function c = l/z. 

10. Obtain the flow in the case where parallel flow w = Uz on the z plane is 
mapped onto the c plane by mapping function c = z1I3. 


